科学家计划2018年制造出“人造太阳”

国际热核聚变实验反应堆示意图

  二、核聚变难度堪比登天

  人造太阳的前景如此美好,那么为什么我们的电网中还没有热核聚变产生的电能呢?

  尽管热核聚变实验反应堆的概念非常简单,但是实现起来却是另外一回事。因为原子核在热核聚变时并不积极,每个原子核都带有一个正电荷,它们之间互相排斥。因此在常规状态下让两个原子核结合起来几乎是不可能完成的。只有达到惊人的高温,原子核才能获得足够的能量克服相互间的排斥,成功撞击,最终实现核聚变。

  太阳内部也是同样的场景。在太阳内部,热量产生自氢原子核的聚变。但是氢原子核只有温度达到开氏1500万度才会慢慢开始热核聚变。太阳内部核燃料的消耗非常缓慢,因此太阳的寿命已经持续了数十亿年。

  然而在核聚变电站,核燃料需要在人类的时间尺度上进行聚变,而不能按照宇宙时间尺度进行。相对来讲,氢的重同位素氘、氚比氢更容易燃烧,但是,要想让氘氚在国际热核聚变实验堆内充分燃烧,温度必须达到天方夜谭般的开氏1亿5千万度。如此高的温度将会带来一系列难以克服的工程难题。特别是,如何控制比太阳内核温度高十倍的电子和原子核高温离子体。

  即使最坚固的建筑材料都不能承受超过数百开氏度的温度。因此科学家提出通过磁场给高温等离子体编织一个“笼子”。ITER采用了若干个小型热核聚变反应堆所采用的设计方法,在这些实验中已经实现了核聚变所需的恐怖高温。

  据悉,国际热核聚变实验反应堆将采用1968年由苏联人发明的托卡马克装置。托卡马克又称环流器,是一个由环形封闭磁场组成的“磁笼”,高温产生的等离子体就被约束在类似于面包圈的磁笼中。托卡马克装置通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。国际热核聚变实验反应堆中的托卡马克装置是一个直径超过12米、容积达837立方米的环形容器,里面环绕着超导电磁线圈。环形托卡马克装置外部的磁体能产生强烈的螺旋型磁场,能够约束热核聚变中产生的超高温等离子体。为了打造这一巨大的磁性笼子,国际热核聚变实验反应堆项目需要超过10000吨的铌合金制成的超导线圈,并且要用低温液态氦气来降温。





上一篇 下一篇